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A general methodology for analyzing beam wave propagation in complex

paraxial optical systems that can be described by an ABCD ray transfer matrix

was put forth in a recent publication (Ref. 1). In the methodology is a

formalism for evaluating ray tilt in a general optical system. This report Is

an addendum to Ref. 1 which describes how additional optical system defects

may be included in the wave propagation analysis in a straightforward manner.

First, the addition of ray decenters to the tilt analysis will be discussed.

Second, the inclusion of despace errors will be discussed to complete the

modeling of alignment defects, and lastly, a procedure for modeling the

manufacturing errors of radius errors and cylinder errors will be identified.

In Section 5 of Ref. 1 tilt and Jitter in optical systems were discussed

and Eqs. (54)-(63) quantifying the description were presented. Equation (54)

of Ref. 1 defines a Gaussian random tilt variable for the J-th optical element

as

ej :- Zj I ,e 0 06

if a iIs generalized to include a Gaussian random displacement variable, then

element decenters may also be modeled using the same formalism as outlined for

tilts to evaluate ray decenters. Generalizing Eq. (54) is straightforward:

by including a decentor error, hi, the tilt vector, now generalized, becomes

(h > 6 (541')-<jJ _J

where angular brackets denote the mean value, and the primed equations (here

and below) give the corresponding modifications to the results of Ref. 1.

The changes to the remaining equations or Section 5 are

straightforward. There are only four changes to the remaining equations:
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ra A J (r) hj (55')

rrh 4

T j = (59'1)

t JAjhj +* i ae 1 (61')
j: 1

n

t': 1Chj + 1j jJ (62')

All other equations may be used as is to predict the performance of optical

systems experiencing both ray tilts and decenters.

Another major alignment defect is despace (i.e., a change in separation
between any two surface entities). This error type cannot be handled as a ray
tilt or decenter. To incorporate this type of error one must include an

additional translation matrix, Sj, in the appropriate location In the matrix

product which describes the optical system. This inclusion will result in
minor modification of Eq. (57), and Eq. (58) of Ref. 1 if necessary, to

incorporate the additional matrix. Other defects may be modeled this way.

Surface tilts and decenters may be incorporated directly by replacing untilted

or decentered surfaces with tilted or decentered surfaces. References 2 and 3
give excellent discussions on tilts and decenters. In the same manner, the

manufacturing defects of radius error and cylinder may also be included by the
introduction of additional defect matrices to the system description matrix.

To model radius errors, an additional powered surface is added prior to the

designed surface. Cylinder is modeled by adding the defect into only one of
the axes, x or y. If necessary, the cylinders may be rotated, but the
resultant terms of the form "Axy" will necessitate the use of full 4 X 4
matrix analysis (Refs. 4,5). Radius and cylinder errors may also be modeled

directly by a random error analysis of the curvature variables, but the

inclusion of additional matrices is sometimes clerically advantageous.
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A pedagogical example now follows that will demonstrate the effect of

alignment errors (tilt, decenter, and despace) on a typical optical system.

Referring to Fig. 1, an focal telescope is shown followed by a focusing

lens. This is a typical system often encountered in practice " as a beam

director to view distant objects. In this case, the model is comprised o--

three repetitions of the Fourier transform configuration. The first two

establish an focal relay with magnification, m, and the third produces a focus

for a detector. In the transform configuration, a collimated input produces a

focal output and vice versa. Without defects, the model for the system is

[ 0 f3/m 1 (1)-M7 =  m3 0O

where 11 and Y7 are the ray column vectors of the input and output planes,

respectively, m - 1f2 , and t = I/f .

As indicated in Fig. 2, the defect model considered here is a despace (of

separation s) between the foci of the afocal relay, a decenter h of the second

afocal lens in the x-direction and a tilt 0 of the focusing lens also in the

x-direction. The result, including defects, is

£7 = M3M2SNM1 1 + M3M2 [ J M3  (2)

where Mi and S are the basic Fourier transform and despace ray transfer

matrix, given by

M- i 1,2,3 (3)

and ( 5)

S =,(4)

respectively. A
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Fig. 1. The Example System Without Alignment Errors
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Fig. 2. The Example System with Alignment Errors:

Despace, s, Decenter, h, and Ray Tilt, 0
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Substitution of Eq. (6) into Eq. (63) of il~f. 1 yields the output

diffracted field as

ikm
u(r2) 2 (i' 2)]-:f * x k 2 f3 h

d2r u (r 1 ) exp(-ikm sr212f

* 102 f'3sr1/2 3

exp I-iki(f 3 ei+ 2 )-r 11, (5)

where i is a unit vector along the x-axis, and a constant multiplicative phase

factor has been omitted. The terms outside the integral express the amplitude

and a constant wavefront tilt caused by the decenter, h. The initial field,

ui(rl1 ), is multiplied by a quadratic phase factor indicative of the defocus

caused by the afocal telescope despace. The Fourier transform term is shifted

as a result of the ray tilts prior to the focusing lens. As one would expect,

the alignment defects of despace, decenter, and tilt have resulted in defocus,

tilt, and translation, respectively, of the output field.

A word of caution is in order regarding the modeling of alignment errors.

The total ray vector with errors is given by

y' dy' = (M+dM)y + M(y+dy).

The first term on the right hand side, M+dM, corresponds to a system surface

defect-surface tilt, decenter, or despace; while the term y+dy represents a

ray defect. When using ray tilts and decenters to model alignment errors

these are not always identical to surface tilts and decenters. Consider a

plane mirror. If prior to a mirror surface a ray is tilted, the ensuing

optical system will experience a ray tilt whose magitude is equal to the

additional tilt. This is because the mirror acts only as a fold in the

optical path. If the mirror surface is tilted, the ensuing optical system

will experience a ray tilt equal to twice the surface tilt; termed "optical

5



these are not always identical to surface tilts and decenters. Consider a

plane mirror. If prior to a mirror surface a ray is tilted, the ensuing

optical system will experience a ray tilt whose magitude is equal to the

additional tilt. This is because the mirror acts only as a fold in the

optical path. If the mirror surface is tilted, the ensuing optical system

will experience a ray tilt equal to twice the surface tilt; termed "optical

doubling". Mirrors are not the only optical elements to experience a

disparity between ray defects and surface defects. Refracting surfaces also

experience a difference although not as dramatic. In a refractor, if a ray

tilt is used instead of a surface tilt, a weak size obliquity is not accounted

for that is included when a surface tilt is used. Usually, ignoring the

obliquity is of no consequence, but the fact that it is being ignored must not

be overlooked.
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer
" 

for

national security projects, specializing In advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapid , evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural

control; high temperature thermomechanics, gas kinetics and radiation; cw and I

pulsed chemical and excimer laser development including chemical kinetics.
spectrospy, optical resonators, beam control, atmospheric propagation, laser

effects and countermeasures,

Chemistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and

radiative signatures of missile plumes, sensor out-of-field-of-view rejection,

applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on

materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and

environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-

electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: microelectronics, solid-state device

physics, compoind semiconduccors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;

atomic time and frequency standards; antennas, rf systems, electromagnetic

propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at

cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric

and ionospheric physics, density and composition of the upper atmosphere,
remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space

instrumentation.


